Modulation of Gamma-Secretase for the Treatment of Alzheimer's Disease

نویسندگان

  • Barbara Tate
  • Timothy D. McKee
  • Robyn M. B. Loureiro
  • Jo Ann Dumin
  • Weiming Xia
  • Kevin Pojasek
  • Wesley F. Austin
  • Nathan O. Fuller
  • Jed L. Hubbs
  • Ruichao Shen
  • Jeff Jonker
  • Jeff Ives
  • Brian S. Bronk
چکیده

The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)-formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline-are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005). Since γ-secretase is critical for Aβ production, many in the biopharmaceutical community focused on γ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to control γ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aβ peptides without affecting other γ-secretase substrates, the epsilon (ε) cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators of γ-secretase activity have been discovered that spare the ε cleavage of APP and other substrates while decreasing the production of Aβ(42). Multiple chemical classes of γ-secretase modulators have been identified which differ in the pattern of Aβ peptides produced. Ideally, modulators will allow the ε cleavage of all substrates while shifting APP cleavage from Aβ(42) and other highly amyloidogenic Aβ peptides to shorter and less neurotoxic forms of the peptides without altering the total Aβ pool. Here, we compare chemically distinct modulators for effects on APP processing and in vivo activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Targeting the structure and function relationships of the gamma-secretase for the development of Alzheimer's disease].

Genetic and biological studies provide evidence that the production and deposition of amyloid-beta peptides (Abeta) contribute to the etiology of Alzheimer's disease. Thus, beta- and gamma-secretases, that are involved in the Abeta generation, are plausible molecular targets for Alzheimer's disease treatment. gamma-Secretase is an unusual aspartic protease that cleaves the scissile bond within ...

متن کامل

Abeta42-lowering nonsteroidal anti-inflammatory drugs preserve intramembrane cleavage of the amyloid precursor protein (APP) and ErbB-4 receptor and signaling through the APP intracellular domain.

Epidemiological studies indicate that long term use of nonsteroidal anti-inflammatory drugs (NSAIDs) confers protection from Alzheimer's disease, and some NSAIDs were shown to specifically decrease production of the amyloidogenic Abeta42 peptide, most likely by direct modulation of gamma-secretase activity. In contrast to gamma-secretase inhibitors, Abeta42-lowering NSAIDs do not impair S3 clea...

متن کامل

Gamma-secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway.

Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder. It is characterized by the invariant accumulation of the beta-amyloid peptide (Abeta), which mediates synapse loss and cognitive impairment in AD. Current therapeutic approaches concentrate on reducing Abeta levels and amyloid plaque load via modifying or inhibiting the generation of Abeta. Based on in v...

متن کامل

Presenilins in Memory, Alzheimer's Disease, and Therapy

Presenilins are considered to be the catalytic subunits of the gamma-secretase complex and are therefore drug targets for Alzheimer's disease. They are also essential for the fine tuning of the immunological system and for memory and synaptic plasticity. Genetic ablation in the forebrain results in a progressive neurodegenerative process that is independent from Abeta generation. The question a...

متن کامل

Begacestat (GSI-953): a novel, selective thiophene sulfonamide inhibitor of amyloid precursor protein gamma-secretase for the treatment of Alzheimer's disease.

The presenilin containing gamma-secretase complex is responsible for the regulated intramembraneous proteolysis of the amyloid precursor protein (APP), the Notch receptor, and a multitude of other substrates. gamma-Secretase catalyzes the final step in the generation of Abeta(40) and Abeta(42) peptides from APP. Amyloid beta-peptides (Abeta peptides) aggregate to form neurotoxic oligomers, seni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012